Ta có:
1/3^2 < 1/2.3
1/4^2 < 1/3.4
....
1/50^2 < 1/49.50
=> A = 1/1^2 + 1/3^2+1/4^2+...+1/50^2 < 1 + 1/2.3 +1/3.4+...+1/49.50 = 1 + 1/2 - 1/3 + 1/3-1/4 + ...+1/49-1/50 = 1+1/2 - 1/50 < 2
Vậy A<2 (ĐPCM)
ta có:
1/12=1
=> A>1
ta cần chứng minh
A-1<1
ta có
\(\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};....;\frac{1}{50^2}<\frac{1}{49.50}\)\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}=\frac{48}{100}<1\)
=> A-1<1
=>A<2