a < b \(\Rightarrow\) 2a < a + b ; c < d \(\Rightarrow\) 2c < c + d ; m < n \(\Rightarrow\) 2m < m + n
Suy ra 2a + 2c + 2m = 2(a + c + m) < (a + b + c + d + m + n). Do đó
\(\frac{a+c+m}{a+b+c+d+m+n}
a < b \(\Rightarrow\) 2a < a + b ; c < d \(\Rightarrow\) 2c < c + d ; m < n \(\Rightarrow\) 2m < m + n
Suy ra 2a + 2c + 2m = 2(a + c + m) < (a + b + c + d + m + n). Do đó
\(\frac{a+c+m}{a+b+c+d+m+n}
cho 6 số nguyên dương a,b,c,d,m,n thỏa mãn:
a<b<c<d<m<n
chứng minh rằng \(\dfrac{a+c+m}{a+b+c+d+m+n}< \dfrac{1}{2}\)
Cho 6 số nguyên dương a<b<c<d<m<n. Chứng minh rằng : \(\frac{a+c+m}{a+b+c+d++m+n}< \frac{1}{2}\)
Cho 6 số nguyên dương a < b < c <d<m<n.Chứng minh rằng:
\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Cho 6 số nguyên dương a, b, c, d, m, n thỏa a<b<c<d<m<n
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}\)<\(\frac{1}{2}\)
Cho 6 số nguyên dương a, b, c, d, m, n thỏa: a < b < c < d < m < n.
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}\)< \(\frac{1}{2}\)
Cho 6 số nguyên dương a < b < c < d < m < n
Chứng minh rằng \(\frac{a+b+m}{a+b+c+d+m+n}\) \(< \frac{1}{2}\)
Cho 6 số nguyên dương thỏa mãn : a<b<c<d<m<n
Chứng minh rằng: \(\frac{a+d}{a+b+c+d+m+n}
cho 6 số nguyên dương a<b<c<d<m<n. Chứng minh: \(\frac{a+c+m}{a+b+c+d+m+n}
Cho 6 số nguyên dương a<b<c<d<m<n
hãy chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n_{ }}\)< \(\frac{1}{2}\)