Lời giải:
Nếu $a+b+c+d=0$ thì:
$a+b+c=-d; b+c+d=-a; c+d+a=-b; d+a+b=-c$
$\Rightarrow \frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=-1$
Nếu $a+b+c+d\neq 0$ thì:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c+b+c+d+c+d+a+d+a+b}{d+a+b+c}=\frac{3(a+b+c+d)}{a+b+c+d}=3\)
Vậy giá trị của các tỉ số trên có thể bằng $-1$ hoặc $3$