3x + 5y = 7 => x = \(\frac{7-5y}{3}\)
=> \(x^2+y^2=\frac{\left(7-5y\right)^2}{9}+y^2=\frac{49-70y+25y^2+9y^2}{9}=\frac{34y^2-70y+49}{9}\)
34y2 - 70y + 49 = 34. (y2 - 2.y. \(\frac{35}{34}\) + \(\left(\frac{35}{34}\right)^2\)) - \(\frac{35^2}{34}\) + 49 = \(34.\left(y-\frac{35}{34}\right)^2+\frac{441}{34}\)
=> \(x^2+y^2=\frac{34}{9}\left(y-\frac{35}{34}\right)^2+\frac{49}{34}\ge0+\frac{49}{34}=\frac{49}{34}\)
Dấu "=" xảy ra <=> y = 35/34 ; x = 21/34
c2: Áp dụng bất đẳng thức Bu nhia côpxki ta có:
(3x + 5y)2 \(\le\) (32 + 52) .(x2 + y2)
<=> 72 \(\le\) 34.(x2 + y2) => x2 + y2 \(\ge\) 49/34
Dấu "=" xảy ra <=> 5x = 3y mà 3x + 5y = 7 => x = 21/34; y = 35/34