Ta có:
\(7\left(a+b\right)⋮7\)
\(\Rightarrow2\left(3a+2b\right)+a+3b⋮7\)
Mà \(3a+2b⋮7\)
\(\Rightarrow a+3b⋮7\) (đpcm)
Ta có:
\(7\left(a+b\right)⋮7\)
\(\Rightarrow2\left(3a+2b\right)+a+3b⋮7\)
Mà \(3a+2b⋮7\)
\(\Rightarrow a+3b⋮7\) (đpcm)
cho a + 4.n chia hết n.3. CMR 10.a+b chia hết 13
cho 3a + 2b chia hết 17. CMR 10a +bchia hết 17
cho 5a + 3b chia hết 7. CMR a+4b chia hết 7
cho a,b thuộc Z thỏa mãn (3a+2b).(2a+3b) chia hết cho5 .CMR (3a+2b).(2a+3b) chia hết cho 25
cmr a :B = 10n+18n -1 chia hết cho 27
b : nếu a +2b chia hết cho 5 khi và chỉ khi 3a - 4b chia hết cho 5
c : nếu 3a - b +1 và 2a +3b - 1 đều chia hết cho 7 thì a,b chia 7 dư 3
CMR :
a) Với mọi m,n thuộc N: B = 10n + 18n-1 chia hết cho 27
b) Nếu a+2b chia hết cho 5 <=>3a-4b chia hết cho 5
c) Nếu 3a-b+1 và 2a + 3b-1 đều chia hết cho 7 thì a,b đều chia cho 7 đều dư 3.
Cmr (2a+3b) chia hết cho 5 thì (3a+2b) chia hết cho 5
Gợi ý thôi cũng được =)
chứng minh rằng
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
c) nếu a +4b chia hết cho 13 thì 10a + b chia hết cho 13
d) nếu a + 2b chia hết cho 5 thì 3a - 4b chia hết cho 5
e) nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Với a,b là các số tự nhiên. Chứng tỏ rằng : a, nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
B, nếu a— 5b chia hết 17 thì 10a + b chia hết 17
C, nếu a — b chia hết cho 7 thì 4a + 3b chia hết 7
Cho a,b là các số nguyên thoả mãn: 3a+2b chia hết cho 5
CMR : 2a+3b chia hết cho 5
CMR nếu 5a + 3b chia hết cho 7 ( a, b thuộc N) thì 3a - b chia hết cho 7.
LỜI GIẢI RÕ RÀNG NHA!
MK TIK CHO AI TRẢ LỜI NHANH MÀ CHÍNH XÁC NHẤT.!!!!