Đặt A=x^4+y^4+z^4 ,P=x^2+y^2+z^2
Ta có A=(x^2)^2+(y^2)^2+(z^2)^2
Áp dụng bđt Cauchy-Schwarz ta có
3A=[(x^2)^2+(y^2)^2+(z^2)^2](1^2+1^2+1^2) >/ (x^2+y^2+z^2)^2=> A >/ (x^2+y^2+z^2)^2/3
Áp dụng bđt Cauchy-Schwarz lần 2
3P=(x^2+y^2+z^2)(1^2+1^2+1^2) >/ (x+y+z)^2=> P >/ (x+y+z)^2/3 >/ 2^2/3 >/ 4/3
=> A >/ (4/3)^2/3=16/27
Đẳng thức xảy ra <=> x=y=z=2/3