Cho a,b,c là 3 số thực dương thỏa mãn \(a^2+b^2+c^2\le\frac{3}{4}\)
Tìm GTNN của biểu thức \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Cho ba số thực a,b,c không âm và thỏa mãn \(a^2+b^2+c^2+abc=\)4 . Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức \(S=a^2+b^2+c^2\)
cho a,b,c \(\ge0\)thỏa mãn: a2+b2+c2=1. Tìm GTLN,GTNN của biểu thức: A=\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)
Cho a,b,c là các số thực không âm thỏa mãn biểu thức ab+2bc+2ac=7 . Tim giá trị nhỏ nhất của biểu thức \(E=\frac{27a+27b+60c}{\sqrt{8a^2+56}+\sqrt{8b^2+56}+\sqrt{4c^2+7}}\)
1. Cho a,b,c thực dương thỏa mãn: abc=1
Tìm GTLN:
A= \(\frac{a}{b^4+c^4+a}+\frac{b}{a^4+c^4+b}+\frac{c}{a^4+b^4+c}\)
2. Cho a,b,c thực dương thỏa mãn: abc= a+b+c+2
Tìm max:
P= \(\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{a^2+c^2}}\)
Cho 3 số dương a,b,c thỏa mãn \(a+b+c=3\). Tìm GTNN của biểu thức:
\(P=\frac{a}{a^3+b^2+c}+\frac{b}{b^3+c^2+a}+\frac{c}{c^3+a^2+b}\)
1. Cho a,b,c thực dương thỏa mãn: abc=1
Tìm GTLN:
A= \(\frac{a}{b^4+c^4+a}+\frac{b}{a^4+c^4+b}+\frac{c}{a^4+b^4+c}\)
2. Cho a,b,c thực dương thỏa mãn: abc= a+b+c+2
Tìm max:
P= \(\frac{1}{\sqrt{a^2+b^2}}+\frac{1}{\sqrt{b^2+c^2}}+\frac{1}{\sqrt{a^2+c^2}}\)
Cho ba số thực a;b;c thỏa mãn hệ sau: \(\hept{\begin{cases}a+b+c=4\\a^2+b^2+c^2=6\end{cases}}\)
Hãy giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a3 + b2c + bc2.