Ta có : a2 + b2 = c2
=> a2 + b2 - c2 = 0
=> a2 + b2 + 2ab - c2 = 2ab
=> (a + b)2 - c2 = 2ab
=> (a + b - c)(a + b + c) = 2ab
=> (a + b - c)/2 . (a + b + c) = ab
=> ab \(⋮\)a + b + c (đpcm)
Bạn Xyz làm sai rồi nhé !!!!!
Chỗ: \(\left(\frac{a+b-c}{2}\right)\left(a+b+c\right)=ab\)
Đoạn này để có: \(ab⋮\left(a+b+c\right)\) thì bạn phải lập luận \(\frac{a+b-c}{2}\inℤ\) đã nhé !!!!!!
(NẾU BẠN SUY LUÔN RA \(ab⋮\left(a+b+c\right)\) LÀ SAI RỒI)
=> Cần phải chứng minh: \(a+b-c⋮2\)
Có: \(a^2+b^2=c^2\)
=> Nếu a chẵn; b chẵn thì c cũng chẵn => \(a+b-c⋮2\)
Nếu a chẵn; b lẻ thì c lẻ => b - c chẵn => \(a+b-c⋮2\)
Nếu a lẻ; b lẻ thì c chẵn => a + b chẵn => \(a+b-c⋮2\)
Nếu a lẻ; b chẵn thì c lẻ => a - c chẵn => \(a+b-c⋮2\)
VẬY QUA 4 TRƯỜNG HỢP THÌ TA => \(\frac{a+b-c}{2}\inℤ\)
Khi đó thì \(ab⋮\left(a+b+c\right)\)
TA CÓ ĐPCM !!!!!