\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\left(đpcm\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\left(đpcm\right)\)
Cho a/b+c + b/c+a + c/a+b =1 CMR: a^2/b+c + b^2/c+a + c^2/a+b =0
Giúp suli với nhé các bạn ... mai suli phải đi thi rồi. Mơn các bn nha.
Cho 1/a+1/b+1/c=2 và a+b+c=abc. Tính C=1/a^2+1/b^2+1/c^2 gần thi nên bài tệp nhìu vo kẻ, các bn giúp suli với.
a)Cho 3 số dương: a,b,c có tổng =1. CMR: 1/a + 1/b + 1/c >= 9
b) Cho a,b dương và a2018 + b2018= a2019 + b2019 = a2020+b2020. TÍnh a2021 + b2021
Cho các số thực dương thỏa man a + b + c = 1. CMR
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\ge\frac{9}{10}\)
Cho a;b;c là các số thực dương thỏa mãn: a+b+c=3.
Tìm Max của: \(A=\dfrac{1}{a+3}+\dfrac{1}{b+3}+\dfrac{1}{c+3}-\dfrac{1}{3\left(ab+bc+ac\right)}\)
Nhờ các bạn Giúp mk với ạ Mk xin cảm ơn
Cho 3 số dương a,b,c thỏa mãn a+b+c=3. CMR
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho 3 số dương a,b,c thỏa mãn a+b+c = 6.CMR
\(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\ge\frac{3}{2}\)
Cho a, b, c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\). Chứng minh rằng: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{c^2+a^2}+\dfrac{1}{a^2+b^2}\le\dfrac{a^3+b^3+c^3}{2abc}+3\)
Mọi người giúp em với ạ, chiều em phải nộp rồi ạ T.T
Cho a,b,c là 3 số thực dương thỏa mãn abc = 1. CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)