Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Bùi Đại Hiệp

Cho 3 số dương a,b,c thỏa mãn a+b+c=3. CMR

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)

Kha Nguyễn
25 tháng 3 2019 lúc 12:26
https://i.imgur.com/1CZ1bqm.jpg
Nguyễn Việt Lâm
9 tháng 4 2019 lúc 22:37

\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự ta có \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\); \(\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)

\(\Rightarrow VT\ge a+b+c-\frac{1}{2}\left(ab+ac+bc\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
CCDT
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Nguyễn Thị Nguyệt Ánh
Xem chi tiết
Nguyễn Văn Quang
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Trần Anh Thơ
Xem chi tiết