đoạn trên nhầm mà là 1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)vì a+b+c=1
Vì a+b+c=1=>(a+b+c)=(1/a+1/b+1/c)*(a+b+c)
=1+1+1+a/b+b/a+a/c+c/a+b/c+c/b
Áp dung cô si cho a/b+b/a>hoac bang 2
Tg tự a/c+c/a:b/c+c/b cũng vậy
=>(a+b+c)(1/a+1/b+1/c)>hoac bang9
p =.1/a+1/b+1/c>hoac bang9
Dùng bđt Bunhiacopski ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\)