Áp dụng bđt bu nhi a ta có
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow\left(-2-c\right)^2\le2\left(2-c^2\right)\)
=> \(c^2+4c+4\le4-2c^2\)
=> \(3c^2+4c\le0\Rightarrow c\left(3c+4\right)\le0\Rightarrow-\frac{4}{3}\le c\le0\)
Áp dụng bđt bu nhi a ta có
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow\left(-2-c\right)^2\le2\left(2-c^2\right)\)
=> \(c^2+4c+4\le4-2c^2\)
=> \(3c^2+4c\le0\Rightarrow c\left(3c+4\right)\le0\Rightarrow-\frac{4}{3}\le c\le0\)
Cho a, b , c thỏa mãn \(\hept{\begin{cases}0< =a< =b< =1\\2a+b< =2\end{cases}}\). CMR \(2a^2+b^2< =\frac{3}{2}\)
Tìm a, b, c thỏa mãn:
\(\hept{\begin{cases}a^4-2b=\frac{-1}{2}\\b^4-2c=\frac{-1}{2}\\c^4-2a=\frac{-1}{2}\end{cases}}\)
Bài 1
Tìm x,y,z biết
\(4x=3y\) \(2y=4z\)
Và \(x^3-y^3+z^3=29\)
Bài 2 Cho 3 số a,b,c thỏa mãn điều kiện
\(\hept{\begin{cases}a+b+c=-2\\a^2+b^2+c^2=2\end{cases}}\)
Chứng minh \(\frac{-4}{3}\le a,b,c\le0\)
Cho ba số a, b, c thỏa mãn \(\hept{\begin{cases}a+b+c=0\\\\a^2+b^2+c^2=2009\end{cases}}\) tính \(A=a^4+b^4+c^4\)
Cho\(\hept{\begin{cases}a,b,c>0\\abc>1\end{cases}CMR:}2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge7\left(a+b+c\right)-3\)
Cho a,b,c ,(a+b+c) là các số thực khác 0 thỏa mãn điều kiện: \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
Tính \(A=a^{2021}+b^{2021}+c^{2021}\)
Cho a,b,c thỏa mãn
\(\orbr{\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2=2009\end{cases}}}\)
Tính a4 + b4 + c4
cho các số a,b,c,d thỏa mãn\(\hept{\begin{cases}a+b+c+d=3\left(1\right)\\a^2+b^2+c^2+d^2=3\left(2\right)\end{cases}}\)
tính các giá trị của a,b,c khi d đạt giá trị lớn nhất có thể được
Cho 3 số a;b;c thỏa mãn :
\(\hept{\begin{cases}a< b< c\\\text{a+b+c=6}\\\text{ab+bc+ac=}9\end{cases}}\)
CMR : a<1<b<3<c<4