Cho a,b,c>0 thỏa mãn a+b+c=3 Cm\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\ge1\)
\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\ge1\)
a)Cho các số thực không âm a,b,c thỏa mãn điều kiện a+b+c=1
cm: \(a^3+b^3+c^3\le\frac{1}{8}+a^4+b^4+c^4\)
b)Cho a,b,c là các số thực thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
Cho 3 số a;b;c thỏa mãn a+b+c=0 và -1<a;b;c<1.CM \(a^2+b^2+c^2< 2\)
Cho a,b,c > 0 thỏa mãn a+b+c=3
CM \(A=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
1. Cho các số thực không âm \(a;b;c\) (không có hai số nào đồng thời bằng 0) thỏa mãn \(a+b+c \leq 3\)
Tìm giá trị nhỏ nhất: \(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
2. Cho các số thực \(a;b;c \in [0;1]\) thỏa mãn \(a+b+c=2\), tìm giá trị lớn nhất và nhỏ nhất của:
\(B=\dfrac{ab}{1+ab}+\dfrac{bc}{1+bc}+\dfrac{ca}{1+ca}\)
Thank you all :)
cho a,b,c là các số thực dương thỏa mãn a^2+b^2+c^2=3
cm 1/(1+a^2b^2) +1/(1+b^2c^2) +1/(1+c^2a^2) >=9/(2a+2b+2c)
cho 3 số dương a,b,c thỏa mãn a^2 + b^2 + c^2 =1
CMR: a^2/(1+b-a) + b^2/(1+c-b) + c^2/(1+a-c) >=1
cho 3 số dương a,b,c thỏa mãn abc=1 CM 2/a^3(b+c) + 2/b^3(c+a) + 2/c^3(a+b)>=3
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)