Cho a,b,c là độ dài 3 cạnh của tam giác ABC thảo mãn a^2 + b^2 > 5c^2. CMr c<a và c<b
Cho a,b,c là độ dài 3 cạnh của tam giác ABC thảo mãn a^2 + b^2 > 5c^2. CMr c<a và c<b
Giúp mình với ạ cần gấp
Cho a,b,c là độ dài 3 cạnh của một tam giác . Chứng minh \(a^2+b^2+c^2\le2\left(ab+bc+ca\right)\)
Cho a,b,c là độ dài 3 cạnh của 1 tam giác . CM : \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\)
1. Cho a,b,c là độ dài 3 cạnh của 1 tam giác vuông, cạnh huyền là a. Cmr: a3 > b3 + c3
2. Cho a,b,c > 0 và a+b+c=4. CMR: ab/a+b+2c + bc/2a+b+c + ac/a+2b+c <= 1
Cho a,b,c là độ dài 3 cạnh của 1 tam giác
CMR \(\frac{b^2+c^2-a^2}{bc}+\frac{c^2+a^2-b^2}{ac}+\frac{a^2+b^2-c^2}{ab}>2\)
1. Cho a,b,c là độ dài 3 cạnh của 1 tam giác vuông, cạnh huyền là a. Cmr:
a3 > b3 + c3
2. Cho a,b,c > 0 và a+b+c=4. CMR
ab/a+b+2c + bc/2a+b+c + ac/a+2b+c <= 1
a,b,c là độ dài 3 cạnh của 1 tam giác chu vi bằng 1 cmr
\(\frac{b+c-a}{a^2+bc}+\frac{c+a-b}{b^2+ca}+\frac{a+b-c}{c^2+ab}>4\)
Cho a,b,c là độ dài 3 cạnh của một tam giác
CMR: \(\left(a+b\right)\sqrt{ab}+\left(a+c\right)\sqrt{ac}+\left(b+c\right)\sqrt{bc}\ge\frac{\left(a+b+c\right)^2}{2}\)