Áp dụng bất đẳng thức Côsi với \(x,y,z>0\): \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}.3\sqrt[3]{xyz}=9\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
Áp dụng: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\)
Tương tự \(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c};\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\)
Cộng theo vế các bất đẳng thức trên:
\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)