\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{4}=\frac{b}{6}\). Vậy \(\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\)
=> \(\left(\frac{a}{4}\right)^3=\left(\frac{b}{6}\right)^3=\left(\frac{c}{9}\right)^3=\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}\)
Áp dụng t/c dãy tỉ số bằng nhau được:
\(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}=\frac{a^3+b^3+c^3}{64+216+729}=\frac{-1009}{1009}=-1\)
\(\left(\frac{a}{4}\right)^3=\left(\frac{b}{6}\right)^3=\left(\frac{c}{9}\right)^3=-1\) => \(\frac{a}{4}=\frac{b}{6}=\frac{c}{9}=-1\)
=> a=-3 ; b=-6 ; c=-9
\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{4}=\frac{b}{6}\left(1\right)\)
\(\frac{a}{4}=\frac{c}{9}\left(2\right)\)
từ (1) và (2) suy ra \(\frac{a}{4}=\frac{b}{6}=\frac{c}{9}\Rightarrow\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}\)
áp dụng tc của dãy tỉ số bằng nhau và a3+b3+c3=-1009
Ta có ; \(\frac{a^3}{64}=\frac{b^3}{216}=\frac{c^3}{729}=\frac{a^3+b^3+c^3}{64+216+729}=\frac{-1009}{1009}=-1\)
* \(\frac{a^3}{64}=-1\Rightarrow a^3=-64=\left(-4\right)^3\Rightarrow a=-4\)
*\(\frac{b^3}{216}=-1\Rightarrow b^3=-216=\left(-6\right)^3\Rightarrow b=-6\)
*\(\frac{c^3}{729}=-1\Rightarrow c^3=-729=\left(-9\right)^3\Rightarrow c=-9\)