Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bui Trinh Minh Ngoc

cho |2x-1|+(3y+2)2 be hon hoac bang 0

tinh S=x2+y2-xy

kudo shinichi
29 tháng 6 2018 lúc 14:16

Ta có: \(\hept{\begin{cases}\left|2x-1\right|\ge0\forall x\\\left(3y+2\right)^2\ge0\forall y\end{cases}\Rightarrow\left|2x-1\right|+\left(3y+2\right)^2\ge0\forall x;y}\)

Mà \(\left|2x-1\right|+\left(3y+2\right)^2\le0\)

Dấu = xảy ra \(\Rightarrow\hept{\begin{cases}\left|2x-1\right|=0\\\left(3y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-2}{3}\end{cases}}}\)

\(\Rightarrow S=x^2+y^2-xy=\left(\frac{1}{2}\right)^2+\left(\frac{-2}{3}\right)^2-\left(\frac{1}{2}.\frac{-2}{3}\right)\)

\(S=\frac{1}{4}+\frac{4}{9}+\frac{1}{3}\)

\(S=\frac{9}{36}+\frac{16}{36}+\frac{12}{36}\)

\(S=\frac{37}{36}\)

Phùng Minh Quân
29 tháng 6 2018 lúc 14:05

Ta có : 

\(\left|2x-1\right|\ge0\)

\(\left(3y+2\right)^2\ge0\)

\(\Rightarrow\)\(\left|2x-1\right|+\left(3y+2\right)^2\ge0\)

Mà \(\left|2x-1\right|+\left(3y+2\right)^2\le0\) ( Giả thiết ) 

Do đó : \(\left|2x-1\right|+\left(3y+2\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left|2x-1\right|=0\\\left(3y+2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y+2=0\end{cases}}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}2x=1\\3y=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-2}{3}\end{cases}}}\)

Thay \(x=\frac{1}{2}\) và \(y=\frac{-2}{3}\) vào \(S=x^2+y^2-xy\) ta được : 

\(S=\left(\frac{1}{2}\right)^2+\left(\frac{-2}{3}\right)^2-\frac{1}{2}.\frac{-2}{3}\)

\(S=\frac{1}{4}+\frac{4}{9}+\frac{1}{3}\)

\(S=\frac{3}{4}\)

Vậy \(S=\frac{3}{4}\)

Chúc bạn học tốt ~ 


Các câu hỏi tương tự
Lê Hoàng Ngọc Minh
Xem chi tiết
Le Thi Phuong Nhung
Xem chi tiết
le xuan cuong
Xem chi tiết
bùi trí dũng
Xem chi tiết
Linh Hồ
Xem chi tiết
thieu viet tuan khanh
Xem chi tiết
Lê Hoàng Ngọc Minh
Xem chi tiết
xuan anh Phung
Xem chi tiết
Việt Nguyễn
Xem chi tiết