Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Võ Lê Phương Uyên

cho: 2a+b+c+d/a=a+2b+c+d/b=a+b+2c+d/c=a+b+c+2d/d.Tính M=a+b/c+d + b+c/d+a + c+d/a+b + d+a/b+c

Xyz OLM
26 tháng 10 2020 lúc 12:50

Ta có\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

=> \(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Khi a + b + c + d = 0

=> a + b = -(c + d)

b + c = -(a + d)

Khi đó \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{a+d}{b+c}\)

\(=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{c+d}{-\left(c+d\right)}+\frac{a+d}{-\left(a+d\right)}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)\)= -4

Nếu a + b + d + d \(\ne\)0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = \(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=\frac{2a}{2a}+\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}=1+1+1+1=4\)

Vậy khi a + b + c + d = 0 => M = -4

khi a + b + c + d \(\ne\)0 => M = 4

Khách vãng lai đã xóa

Các câu hỏi tương tự
nguyen duy thanh
Xem chi tiết
Nguyễn Hoàng Hiếu Anh
Xem chi tiết
Moon
Xem chi tiết
Trần Thu Ha
Xem chi tiết
Tú Nguyễn Ngọc Anh
Xem chi tiết
Tran Thi Tam Phuc
Xem chi tiết
Nguyễn Ngọc Bảo Xuân
Xem chi tiết
Moon
Xem chi tiết
PIKACHU
Xem chi tiết