Cho các số thực dương a,b,c thoả mãn ac + b2 = 2bc. Tìm giá trị nhỏ nhất của biểu thức
P = \(x = {2a^2 + b^2 \over \sqrt{a^2b^2- ab^3 + 4b^4}} + {2b^2 + c^2 \over \sqrt{b^2c^2- bc^3 + 4c^4}}\)
Cho các số thực a,b,c dương thỏa mãn ab+2bc+2ca=4.Tính gần đúng GTNN của P=a2+2b2+4c2 và tìm giá trị gần đúng của a,b,c để P đạt GTNN đó
Cho a+b+c =1. cmr \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+2bc+2c^2}+\sqrt{2c^2+ac+2a^2}>=\sqrt{5}\)
Cho a,b,c là các số thực thỏa mãn: \(\hept{\begin{cases}a,b>0\\a+2b-4c+2=0\\2a-b+7c-11=0\end{cases}}\). Tìm GTLN và GTNN của P=6a+7b+2006c
Cho a,b,c la cac so thuc duong:Tim GTLN cua bieu thuc P= (a^2b+b^2c+c^2a);(a^2+b^2+c^2)- 1:3(a^2+b^2+c^2)
cho a b c > 0
chứng minh rằng
a/(b+4c+2a) + b/(c+4a+2b) + c/(a+4b+2c) <= 1/2
(3a-b)/(a^2+ab) + (3b-c)/(b^2+cb) + (3c-a)/(ac^2+ac) <= a/bc +b/ac + c/ab
Cho các số dương a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\)
Tìm GTNN của P=\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ac+2a^2}\)
1/Cho a,b,c≥0 và \(a^2+b^2+c^2\le abc\). Tìm GTLN của
M=\(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ba}\)
2/Cho a,b,c>0 thỏa mãn 13a+5b+12c=9. Tìm GTLN của
N=\(\frac{ab}{2a+b}+\frac{3bc}{2b+c}+\frac{6ca}{2c+a}\)
3/Cho a,b,c>0 thỏa mãn a+b+c=3. Tìm GTNN của
P=\(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\)
4/Cho các số thực a,b,c thỏa mãn ab+7bc+ca=188.
Tìm GTNN của P=\(5a^2+11b^2+5c^2\)
Ai giải được câu nào giải hộ mình vs ạ!!!
cho 0<a,b,c<1 a ab+bc+ac=1.Tim GTNN:P=(a^2(1-2b))/b+(b^2(1-2c))/c+(c^2(1-2a))/a