Cho \(\frac{2010c-2011b}{2009}=\frac{2011a-2009c}{2010}=\frac{2009b-2010a}{2011}\)
CMR \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}\)
Cho : \(\frac{2010a-2011b}{2009}=\frac{2011a-2009c}{2010}=\frac{2009b-2010a}{2011}\)
Chứng minh rằng : \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}\)
Chứng minh rằng nếu (a + 2009)(b - 2010) = (a - 2009)(b + 2010) thì 2010a = 2009b.
cho a/2b = b/2c = c/2d = d/2a (a,b,c,d>0) .Tinh A = 2011a-2010b/c+d + 2011b-2010c/a+d + 2011c-2010d/a+b + 2011d-2010a/b+c
cho a/2b = b/2c = c/2d = d/2a (a,b,c,d>0) .Tinh A = 2011a-2010b/c+d + 2011b-2010c/a+d + 2011c-2010d/a+b + 2011d-2010a/b+c
Cho \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\left(a,b,c,d>0\right)\)
Tính: \(\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
Cho \(\frac{2010\cdot c-2011\cdot b}{2009}=\frac{2011\cdot a-2009\cdot c}{2010}=\frac{2009\cdot b-2010\cdot c}{2011}\)
C/m \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}\)
Cho a/2b=b/2c=c/2d=d/2a (a,b,c,d >0)
Tính M= [(2011a-2010b)/(c+d)] +[(2011b-2010c)/(a+d)] +[(2011c-2010d)/(a+b)] +[(2011d-2010a)/(b+c)]
Cho số A=2011; b khác 2009; c khác 2010 và \(\frac{a-2009}{b-2011}=\frac{b-2011}{c-2010}:\frac{2011-b}{2010-c}=\frac{2010-c}{2009-a}\)
Tìm tỉ số \(\frac{b}{c}\)?