\(1\ge\frac{1}{x}+\frac{1}{y+1}\ge\frac{4}{x+y+1}\Rightarrow x+y+1\ge4\)
\(\Rightarrow x+y\ge3\)
\(P=\frac{x+y}{9}+\frac{1}{x+y}+\frac{8}{9}\left(x+y\right)\ge2\sqrt{\frac{x+y}{9\left(x+y\right)}}+\frac{8}{9}.3=\frac{10}{3}\)
\(P_{min}=\frac{10}{3}\) khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)