\(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)
\(P=\frac{1}{x^2+y^2+1}+\frac{1}{6xy}+\frac{7}{30xy}\ge\frac{4}{x^2+y^2+1+6xy}+\frac{7}{30xy}\)
\(P\ge\frac{4}{\left(x+y\right)^2+4xy+1}+\frac{7}{30xy}\ge\frac{4}{1^2+1+1}+\frac{7}{30.\frac{1}{4}}=\frac{34}{15}\)
\(P_{min}=\frac{34}{15}\) khi \(x=y=\frac{1}{2}\)