\(b^3-a^3=\left(b-a\right)\left(a^2+ab+b^2\right)\)
\(=2\left(a^2+ab+b^2\right)=a^2+b^2+\left(a+b\right)^2\) là tổng của ba số chính phương (đpcm)
\(b^3-a^3=\left(b-a\right)\left(a^2+ab+b^2\right)\)
\(=2\left(a^2+ab+b^2\right)=a^2+b^2+\left(a+b\right)^2\) là tổng của ba số chính phương (đpcm)
Cho 2 sơ ttự nhiên a và b trong đó a = b - 2.
Chứng minh rằng \(b^3-a^3\)viết được dưới dạng tổng ba số chính phương.
Cho hai số tự nhiên a và b trong đó a=b-2. Chứng minh rằng b3-a3 viết được dưới dạng tổng của ba số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
GIÚP THÌ TICK CHO
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
Giúp với!!
Rút gọn biểu thức:
A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)
11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
Ôn lại 7 Hằng đẳng thức đáng nhớ
Vận dụng : a) Chứng minh rằng số 3599 được viết dưới dạng tích của 2 số tự nhiên khác 1
b) Chứng minh rằng: Biểu thức sau đây được viết dưới dạng tổng bình phương của 2 biểu thức:
x2 + 2( x + 1 )2 + 3( x + 2 )2 + 4( x + 3)2
Rút gọn biểu thức:
A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)
11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
Tks mọi người ạ ^^