1) với x,y là số thực dương, tìm giá trị nhỏ nhất của biểu thức \(\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
2) cho x,y,z là các số thực lớn hơn -1. chứng minh \(\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\ge2\)
Tìm giá trị nhỏ nhất của biểu thức: A =\(\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\left(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{x+z}}{y}+\frac{\sqrt{x+y}}{z}\right)\)
Biết rằng x,y,z là 3 số thực dương thay đổi có tổng bằng \(\sqrt{2}\)
Bài tập chỉ mang tính giải trí, ^^
Cho các số x, y dương. Tìm gi{ trị nhỏ nhất của biểu thức:
\(P=\frac{2}{\sqrt{\left(2x+y\right)^3+1}-1}+\frac{2}{\sqrt{\left(x+2y\right)^2+1}-1}+\frac{\left(2x+y\right)\left(y+2x\right)}{4}-\frac{8}{3\left(x+y\right)}\)
Với x,y,z là 3 số thực dương thỏa mãn x+y+z=3,tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{z}+\sqrt{x}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)
Với x;y là những số thực, tìm GTNN của biểu thức:
\(P=\sqrt{\frac{x^3}{x^{3\: }+8Y^3}}+\sqrt{\frac{4Y^3}{Y^3+\left(X+Y\right)^3}}\)
Đang tìm những bạn giỏi thật sự trên OLM
Cho 2 số thực dương x,y. Tìm giá trị nhỏ nhất của biểu thức
P=căn[x^3/(x^3+8y^3)]+căn{4y^3/[y^3+(x+y)^3]}
Cho 2 số thực dương x,y. Tìm giá trị nhỏ nhất của biểu thức
P=căn[x^3/(x^3+8y^3)]+căn{4y^3/[y^3+(x+y)^3]}
Cho 2 số thực dương x,y. Tìm giá trị nhỏ nhất của biểu thức
P=căn[x^3/(x^3+8y^3)]+căn{4y^3/[y^3+(x+y)^3]}
1. \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{3}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{3}+3}{3-\sqrt{3}}\)
a) Rút gọn P
b) Tính giá trị nhỏ nhất của P
c) Tính giá trị của P với \(x=14-6\sqrt{5}\)
2. Tìm giá trị nhỏ nhất của biểu thức \(P=x^2-x\sqrt{3}+1\)
3. Tìm số dương x để biểu thức \(Y=\frac{x}{\left(x+2011\right)^2}\)đạt giá trị lớn nhất
4. Cho \(Q=\frac{1}{x-\sqrt{x}+2}\)xác định x để Q đạt giá trị lớn nhất