Cho hai số dương a và b thỏa mãn:a+b≤2. Tìm GTNN của biẻu thức:M=\(\dfrac{1}{a^2+b^2}+ab+{2}{ab}\)
cho các số a,b thỏa mãn:a^2+b^2=a^3+b^3=1
tính giá trị biểu thức:a=a^4+b^4
Cho a;b;c thỏa mãn:-1≤a;b;c≤2 và a+b+c=1.Tìm GTLN của:a^2+b^2+c^2
cho a,b,c>0 thỏa mãn:a+b+c=1
tìm GTNN:\(P=\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}+\frac{1}{9abc}\)
cho các số thực fuwowng a,b,c thỏa mãn:a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức
\(p=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
Cho a,b,c là các số thực thỏa mãn:a2+b2+c2 =1.Chứng minh : abc+2.(1+a+b+c+ab+bc+ca) > 0
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Cho a\(\ge\)-1;b\(\ge\)-1 thỏa mãn:a+b=1.Tìm GTLN cua P=\(\sqrt{a+1}\)+\(\sqrt{b+1}\)
cho a b c d là các số dương thỏa mãn a+b+c+d=2 tìm min a^2+b^2+c^1+d^2