1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).
2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(a-b\right)\left(a+b-1\right)\).
3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).
1)
i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.
ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).
2)
i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .
ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).
Cho a, b là 2 số thực dương thỏa mãn a + b = ab. Tìm giá trị nhỏ nhất của biểu thức P = 1 a 2 + 2 a + 1 b 2 + 2 b + 1 + a 2 1 + b 2
Cho a, b, c là các số thực dương thỏa mãn: a+b+c=4, a.b.c=2.
Tìm giá trị nhỏ nhất của biểu thức: P= a^4+b^4+c^4.
Cho các số dương a,b,c thỏa mãn a + b + c = 1 . Tìm giá trị nhỏ nhất của biểu thức:
\(P=2\left(a^2b+b^2c+c^2a\right)+\left(a^2+b^2+c^2\right)+4abc\)
Cho 4 số thực dương a,b,c,d thỏa mãn a+b+c+d = 4
Tìm giá trị nhỏ nhất của biểu thức M = \(\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\)
Cho ba số dương a, b, c thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức:
\(A=17\left(a^2+b^2+c^2\right)+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Với hai số thực không âm a,b thỏa mãn a^2+b^2=4. Tìm giá trị lớn nhất của biểu thức M= ab/(a+b+2)
Cho các số thực dương a,b,c thoả mãn ac + b2 = 2bc. Tìm giá trị nhỏ nhất của biểu thức
P = \(x = {2a^2 + b^2 \over \sqrt{a^2b^2- ab^3 + 4b^4}} + {2b^2 + c^2 \over \sqrt{b^2c^2- bc^3 + 4c^4}}\)
Cho a, b là các số dương thỏa mãn ab = 4. Tìm giá trị nhỏ nhất của biểu thức sau:
\(\frac{\left(a+b-2\right)\left(a^2+b^2\right)}{a+b}\)