1.Cho các góc\(\alpha,\beta\)nhọn và \(\alpha< \beta\). Chứng minh \(\sin\left(\beta-\alpha\right)=\sin\beta\cos\alpha-\cos\beta\sin\alpha\)
2.Cho các góc \(\alpha,\beta\)nhọn và \(\alpha< \beta\).Chứng minh \(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
3.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
4.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
Cho hai góc nhọn \(\alpha\)và \(\beta\)sao cho \(\alpha+\beta< 90\)độ .
CMR: \(\sin\left(\alpha+\beta\right)=\sin\alpha\times\cos\beta+\sin\beta\times\cos\alpha\)
cho 2 góc \(\alpha\) và \(\beta\) sao cho \(\alpha\) + \(\beta\) < 90 độ
chứng minh \(\sin\left(\alpha+\beta\right)=sin\left(\alpha\right).\cos\left(\beta\right)+\cos\left(\alpha\right).\sin\left(\beta\right)\)
cho tam giác ABC vuonong tị A có AB<Ac, M là trung điểm BC
\(góc ACB=\alpha\), góc AMB =\(\beta\) . CMR: \(\left(cos^2\alpha-sin^2\alpha\right)=cos\beta\)
Cho \(\alpha,\beta\)nhọn. chứng minh
\(\cos\left(\alpha+\beta\right)=\cos\beta\cos\alpha-\sin\alpha\sin\beta\)
f) Cho α, Blà hai góc nhọn. Chứng minh rằng:
\(\cos^2\alpha-\cos^2\beta=\sin^2\alpha-\sin^2\beta=\dfrac{1}{1+\tan^2\alpha}-\dfrac{1}{1+tan^2\beta}\)
cho tam giác ABC vuonong tị A có AB<Ac, M là trung điểm BC
\(ACB=\alpha\) , góc AMB =\(\beta\) CMR: \(\left(-sin^2\alpha+cos^2\alpha\right)=sin\beta\)
Cho \(\alpha,\beta\) là các góc nhọn thỏa mãn: \(\alpha+\beta< 90\). Chứng minh: \(\sin(\alpha+\beta)=\sin\alpha.\cos\beta+\cos\alpha.\sin\beta\)
Ai rảnh giúo mik vs nhé...
cho \(0^o< \alpha< \beta< 90^o\). chứng minh :\(\cos\left(\alpha-\beta\right)=\cos\left(\alpha\right)\cos\left(\beta\right)+\sin\left(\alpha\right)\sin\left(\beta\right)\)