Cho \(1\le a\le2;1\le b\le2\)
Chứng minh rằng \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\le\frac{9}{2}\)
Cho các số thực a, b, c đôi một khác nhau thỏa mãn \(0\le a;b;c\le2\)
CMR: \(\frac{1}{^{\left(a-b\right)^2}}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{9}{4}\)
cho \(0< a\le\frac{1}{2},0< b\le\frac{1}{2}.CM:\left(\frac{a+b}{2-a-b}\right)^2\ge\frac{ab}{\left(1-a\right)\left(1-b\right)}\)
Cho 2 số thực a, b thay đổi sao cho \(1\le a\le2\) ; \(1\le b\le2\)
Tìm GTLN của biêu thức A= \(\left(a+b^2+\frac{4}{a^2}+\frac{2}{b}\right)\left(b+a^2+\frac{4}{b^2}+\frac{2}{a}\right)\)
Cho \(0\le a,b,c\le2\) \(\left(a\ne b\ne c\right)\) CMR \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac94\)
cho các số thực a,b,c đôi một khác nhau thỏa mãn \(0\le a,b,c\le2\) . CMR:
\(P=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{9}{4}\)
\(P=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)
\(0\le a< b< c\le2\)
GTNN
cho \(1\le a,b,c\le2\)
chúng minh \(\frac{\left(a+b\right)^2}{2c^2+2ab+3c\left(a+b\right)}+\frac{c^2}{\left(a+b\right)^2+6c\left(a+b\right)+4c^2}\ge\frac{3}{11}\)
\(0\le a< b< c\le2.\). Tìm giá trị nhỏ nhất \(P=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)