a) Ta có: \(\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)
Để \(\frac{12n+1}{2n+3}\)là số nguyên thì \(\frac{17}{2n+3}\)là số nguyên
=> 2n+3\(\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
Ta có bảng
| 2n+3 | -17 | -1 | 1 | 17 |
| n | -10 | -2 | -1 | 7 |