a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
b: Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC vuông góc với CD
=>OA//CD
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
b: Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC vuông góc với CD
=>OA//CD
Cho điểm A nằm ngoài (O), kẻ 2 tiếp tuyến AB, AC với đường tròn (O) (B,C là tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính CD của đường tròn tâm (O), DA cắt (O) tại E.
a) Cm: 4 điểm A, B, C, O cùng thuộc 1 đường tròn.
b) Cm: OA vuông góc với BC và AE,AD=AH.AO
c) Gọi M là trung điểm của AC. Cm: ME là tiếp tuyến của (O)
cứu tớ câu c với!!!!!!!!
Từ điểm A ở ngoài đường tròn (O,R) . Vẽ 2 tiếp tuyến Ab , AC
a. cm : OA vuông góc BC
b. Lấy điểm M bất kì trên cung nhỏ BC . Vẽ tiếp tuyến tại M của (O) cắt AB , AC lần lượt tại E , F . cm : Góc EOF = \(\frac{GócBOC}{2}\)
c. Kẻ đường kính BD của đường tròn (O) và vẽ CK vuông góc BD tại K . cm : AC . CD = CK . OA
Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).
a) cm: A,B,O,C cùng thuộc một đường tròn.
b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.
c) cm: BC trùng với tia phân giác của góc DHE.
d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.
Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.
a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.
b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.
c) cm: BC là tia phân giác của góc ABH.
d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.
Từ một điểm S nằm bên ngoài đường tròn tâm O vẽ các tiếp tuyến SA, SB (A,B là các điểm ) . Kẻ đường kính AC của đường tròn (O) . Tiếp tuyến tại C của đường tròn (O) cắt AB tại E và cắt tia SB tại D
a, CM: A O S B cùng thuộc đường tròn
b, CM: AC2 = AB x và SO//
c, CM: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác SOD
Cho đường tròn (O) . Từ một điểm A nằm ngoài đường tròn kẻ các tiếp tuyến AB và AC( B,C là các tiếp điểm). H là giao điểm của OA và BC.
a) Chứng minh AO vuông góc với BC tại H.
b) từ điểm B Vẽ đường kính BD của đường tròn tâm O. Đường thẳng AD cắt đường tròn tâm O tại E( E khác D)
Chứng minh AE.AD=AH.AO
c) qua O kẻ đường thẳng vuông góc với AD tại K cắt BC tại F. Chứng minh FD là tiếp tuyến của đường tròn tâm O
cho đường tròn (O, điểm D nằm bên ngoài đường tròn. Kẻ các tiếp tuyến DA,DC với đường tròn (A,C là các tiếp điểm)
1. chứng minh DO vuông gócA AC2. Vẽ đường kính AOB, hai đường BC và AD cắt nhau tại F, chứng minh DA=DF3.vẽ CH vuông góc AB ( H thuộc AB), Goi K, E lần lượt giao điểm của BD và CH, AK và DC, chứng minh HK=KC, EB là tiếp tuyến của đường tròn (O)giúp mình chứng minh EB là tiếp tuyến (O)
Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC đến (O) (B,C là các tiếp điểm). Kẻ đường kính BD của đường tròn (O). Đường thẳng đi qua O vuông góc với đường thẳng AD và AD, BC lần lượt tại K, E. Gọi I là giao điểm của OA và BC.
a, C/m các tứ giác ABOC, AIKE nội tiếp đường tròn
b, C/m OI.OA=OK.OE
c, Bt OA=5cm, đường tròn (O) có bán kính R=3cm. Tính độ dài đoạn thẳng BE
Cho đường tròn (O;R) và 1 điểm A nằm ngoài đường tròn
Từ A vẽ 2 tiếp tuyến AB và AC(B,C là tiếp điểm) . Kẻ đường kính BD, đường thẳng vuông góc với BD tại Ở cắt đường thẳng DC tại E.
CM: đường thẳng BD cắt OA và OE lần lượt tại I và K. Cm: IK.IC+OI.IA=R^2