Chọn D.
Ta có: I = ∫ - 1 2 xdx + ∫ - 1 2 2 f ( x ) dx + ∫ - 1 2 3 g ( x ) dx
= x 2 2 | - 1 2 + 2 ∫ - 1 2 f ( x ) dx + 3 ∫ - 1 2 g ( x ) dx = 5 2 .
Chọn D.
Ta có: I = ∫ - 1 2 xdx + ∫ - 1 2 2 f ( x ) dx + ∫ - 1 2 3 g ( x ) dx
= x 2 2 | - 1 2 + 2 ∫ - 1 2 f ( x ) dx + 3 ∫ - 1 2 g ( x ) dx = 5 2 .
Cho hàm số f(x) thỏa mãn ∫ 1 2 ( 2 x + 3 ) f ' ( x ) d x = 15 và 7f(2)-5f(1)=8. Tính I = ∫ 1 2 f ( x ) d x
A. I = 7 2
B. I = - 2 7
C. I = 2 7
D. I = - 7 2
Cho hàm số f(x) liên tục trên R và có ∫ 0 1 f ( x ) d x = 2 ; ∫ 0 3 f ( x ) d x = 6 . T í n h I = ∫ - 1 1 f ( | 2 x - 1 | ) dx
A. I= 2/3
B. I= 4
C. I= 3/2
D. I= 6
Cho F(x) là một nguyên hàm của hàm số f(x) trên đoạn [1;3], F(1)=3,F(3)=5 và ∫ 1 3 ( x 4 - 8 x ) f ( x ) dx = 12 . Tính I = ∫ 1 3 ( x 3 - 2 ) F ( x ) dx .
A. I= 147 2
B. I= 147 3
C. I= - 147 2
D. I= 147.
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1], f(x) và f' (x) đều nhận giá trị dương trên đoạn [0;1] và thỏa mãn f(0)=2, ∫ 0 1 f ' ( x ) . [ f ( x ) ] 2 + 1 ] dx = 2 ∫ 0 1 f ' ( x ) . f ( x ) dx . Tính ∫ 0 1 [ f ( x ) ] 3 dx ?
A. 15/4.
B. 15/2.
C. 17/2.
D. 19/2.
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0;1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ] d x ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [1;2] thỏa mãn ∫ 1 2 ( x - 1 ) 2 f ( x ) d x = - 1 3 , f(2) = 0 và ∫ 1 2 f ' ( x ) 2 d x = 7 . Tính tích phân ∫ 1 2 f ( x ) d x
A. I = 7 5
B. I = - 7 5
C. I = - 7 20
D. I = 7 20
Cho hàm số y=f(x) liên tục và dương trên R , hình phẳng giới hạn bởi các đường y = g ( x ) = ( x - 1 ) . f ( x 2 - 2 x + 1 ) , trục hoành, x=1,x=2 có diện tích bằng 5. Tính tích phân I = ∫ 0 1 f ( x ) dx .
A. I = 10.
B. I = 20.
C. I = 5.
D. I = 9
Cho hàm số f(x) thỏa mãn f(x).f '(x)=1 với mọi x ∈ ℝ Biết ∫ 1 2 f ( x ) d x = a và f(1)=b,f(2)=c. Tích phân ∫ 1 2 x f ( x ) d x bằng
A. 2c-b-a
B. 2a-b-c
C. 2c-b+a
D. 2a-b+c
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0; 1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 [ ( f ' ( x ) . f ( x ) ) 2 + 1 9 ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x . Tính ∫ 0 1 [ f ( x ) ] 3
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1], thỏa mãn ( f ' ( x ) ) 2 + 4 f ( x ) = 8 x 2 + 4 , ∀ x ∈ [ 0 ; 1 ] và f(1) = 2. Tính ∫ 0 1 f ( x ) d x
A . 1 3
B. 2.
C . 4 3
D . 21 4