Chứng minh (x+y+z)^2-x^2-y^2-z^2=2(xy+yz+zx)
2) cho xyz=2016
chứng minh rằng 2016x/xy+2016x+2016 + y/yz+y+2016 + z/xz+z+1 = 1
Cho x; y là các số không âm, z\(\le\) 0 thỏa mãn x^2 + y^2 + z^2 = 1
Chứng minh: \(\dfrac{x}{1-yz}+\dfrac{y}{1-xz}-\dfrac{z}{1+xy}\ge1\)
cho x;y;z>0 x+y+z=1 chứng minh
\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}-\frac{1}{yz}-\frac{1}{xz}\ge30\)
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
Giúp tớ với:
Cho x+y+z= 0 xy+yz+xz = 0 Chứng minh: x=y=z
Chứng minh rằng :
\(\frac{x-y}{1+xy}+\frac{y-z}{1+yz}+\frac{z-x}{1+xz}=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(1+xy\right)\left(1+yz\right)\left(1+xz\right)}\)
Cho x,y,z#0 và 1/xy+1/yz+1/xz=0
tính x^2/yz+y^2/xy+z^2/xy
Cho x,y,z là các số dương thõa xyz=1. Chứng minh (1/x+y+z)+1/3>2/xy+yz+xz
Cho x² + y² + z² = xy + yz + xz. Chứng minh x = y = z