cho \(0< a\le b\le c\) cmr:
a)\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)
Cho a , b , c , d > 0 . Cmr
\(\Sigma\dfrac{a^3}{b+c+d}\ge\dfrac{a^2+b^2+c^2+d^2}{3}\)
Cho a,b,c > 0. Chứng minh:
a, a + b \(\ge2\sqrt{ab}\)
b, \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{ac}\)
cho 3 số dương a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\) . Cmr
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}+\dfrac{ab+ac+bc}{2}\ge3\)
cho a,b,c>0 thỏa \(a^2+b^2+c^2=\dfrac{5}{3}\)
cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{1}{abc}\)
cho a,b,c>0 thỏa \(a^2+b^2+c^2=\dfrac{5}{3}\)
cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{1}{abc}\)
C/m\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{c}{a+b}}>2\left(a,b,c>0\right)\)
cho 0<a≤b≤c cmr:
b)\(\dfrac{c}{a}+\dfrac{b}{c}\ge\dfrac{b}{a}+\dfrac{a}{b}\)
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR
\(\left(a-1+\dfrac{1}{b}\right)\left(b-1+\dfrac{1}{c}\right)\left(c-1+\dfrac{1}{a}\right)\le1\)