Áp dụng BĐT Cauchy cho các số không âm , ta có :
\(\dfrac{a}{b}+\dfrac{b}{c}\) ≥ \(2\sqrt{\dfrac{a}{b}.\dfrac{b}{c}}=2\sqrt{\dfrac{a}{c}}\left(1\right)\)
\(\dfrac{b}{c}+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{b}{c}.\dfrac{c}{a}}=2\sqrt{\dfrac{b}{a}}\left(2\right)\)
\(\dfrac{a}{b}+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{a}{b}.\dfrac{c}{a}}=2\sqrt{\dfrac{c}{b}}\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
\(2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\) ≥ \(2\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\right)\)
⇔ \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\) ≥ \(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)