cho các số thực dương thỏa mãn \(a+b+c\le\dfrac{3}{2}\)
tìm min \(B=\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cho a,b,c là ba số dương thỏa mãn ab+bc+ca=1
Tính tổng:S=\(a.\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b.\sqrt{\dfrac{\left(1+c^2\right)\left(1+a^2\right)}{1+b^2}}+c.\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
cho a,b,c>0 thỏa \(a^2+b^2+c^2=\dfrac{5}{3}\)
cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{1}{abc}\)
cho a,b,c>0 thỏa \(a^2+b^2+c^2=\dfrac{5}{3}\)
cm:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}< \dfrac{1}{abc}\)
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR
\(\left(a-1+\dfrac{1}{b}\right)\left(b-1+\dfrac{1}{c}\right)\left(c-1+\dfrac{1}{a}\right)\le1\)
Cho a,b,c > 0. Chứng minh:
a, a + b \(\ge2\sqrt{ab}\)
b, \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{ac}\)
bài 1: rút gọn các biểu thức.
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})^2\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}(x\ge0)\)
c) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{(y-2\sqrt{y}+1)^2}{(x-1)^4}}(x\ne1,y\ne1,y>0)\)
bài 2:rút gọn và tính.
a) \(\sqrt{\dfrac{\sqrt{a}-1}{\sqrt{b}+1}:}\sqrt{\dfrac{\sqrt{b}-1}{\sqrt{a}+1}với}a=7,25;b=3,25\)
b) \(\sqrt{15a^2-8a\sqrt{15}+16}vớia=\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}\)
c) \(\sqrt{10a^2-4a\sqrt{10}+4}vớia=\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{5}{2}}\)
d) \(\sqrt{a^2+2\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}(a=\sqrt{5})\)
bài 3: rút gọn các biểu thức.
a) \(\sqrt{9(x-5)^2}(x\ge5)\)
b) \(\sqrt{x^2.(x-2)^2}(x< 0)\)
c)\(\dfrac{\sqrt{108x^3}}{\sqrt{12x}}(x>0)\)
d)\(\dfrac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}(x< 0:y\ne0)\)
ai giúp mik vs ạ, cảm ơn !
Thực hiện phép tính.
a) \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\sqrt{\dfrac{1}{ab}}}\right)\sqrt{ab}\)
b) \(\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right).a^2b^2.\sqrt{\dfrac{n}{m}}\)
Giải chi tiết ra hộ mình với ạ, mình cảm ơn ạ.
Cho a, b, c > 0 thỏa mãn :
\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge2\)
Chứng minh: abc \(\le\) \(\dfrac{1}{8}\)