Bài 3: Liên hệ giữa phép nhân và phép khai phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ari Amy

Cho a,b,c > 0. Chứng minh:

a, a + b \(\ge2\sqrt{ab}\)

b, \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{ac}\)

Aki Tsuki
15 tháng 8 2018 lúc 19:51

a/ Xét hiệu: \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng) (đpcm)

''='' xảy ra khi a = b

b/ Sửa đề chút nhé: CMR:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\)

Áp dụng bđt AM-GM có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}\cdot\dfrac{1}{b}}=2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\);

Tương tự ta có:

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}}\); \(\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{ac}}\)

Cộng 2 vế ba bđt trên ta được:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\left(đpcm\right)\)

''='' xảy ra khi a = b = c


Các câu hỏi tương tự
Thịnh Gia Vân
Xem chi tiết
Lý Mẫn
Xem chi tiết
guard
Xem chi tiết
Bùi Thị Ngọc Anh
Xem chi tiết
Lý Mẫn
Xem chi tiết
Lê Chính
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
lê thị như quỳnh
Xem chi tiết
Thịnh Gia Vân
Xem chi tiết