Bài 3: Liên hệ giữa phép nhân và phép khai phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lý Mẫn

Cho a \(\ge\) 0, b \(\ge\) 0, c \(\ge\) 0. Chứng minh rằng:

a) \(\dfrac{a+b}{2}\) \(\ge\) \(\sqrt{ab}\) (bất đẳng thức Cô-si) ;

b) a + b + c \(\ge\) \(\sqrt{ab}\) + \(\sqrt{bc}\) + \(\sqrt{ca}\) ;

c) a + b + \(\dfrac{1}{2}\) \(\ge\) \(\sqrt{a}\) + \(\sqrt{b}\) ;

Trần Quốc Lộc
10 tháng 6 2018 lúc 21:23

\(\text{a) }\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\\ \Leftrightarrow\dfrac{a+b}{2}-\sqrt{ab}\ge0\\ \Leftrightarrow\dfrac{a+b}{2}-\dfrac{2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{a+b-2\sqrt{ab}}{2}\ge0\\ \Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\left(2\right)\)

BDT (2) luôn đúng \(\forall x\) nên BDT (1) luôn đúng \(\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}=0\\ \Leftrightarrow\sqrt{a}-\sqrt{b}=0\\ \Leftrightarrow\sqrt{a}=\sqrt{b}\\ \Leftrightarrow a=b\)

Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\) đẳng thức xảy ra khi: \(a=b\)

b) Áp dụng BDT Cô-si có:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\\ \dfrac{a+c}{2}\ge\sqrt{ac}\\ \dfrac{b+c}{2}\ge\sqrt{bc}\\ \Rightarrow\dfrac{a+b}{2}+\dfrac{a+c}{2}+\dfrac{b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow\dfrac{a+b+a+c+b+c}{2}\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\\ \Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\)

Vậy \(a+b+c\ge\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) đẳng thức xảy ra khi : \(a=b=c\)

bach nhac lam
1 tháng 7 2019 lúc 16:17

b) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Leftrightarrow2\left(a+b+c\right)\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\)

\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

Vì BĐT cuối luôn đúng mà các phép biến đổi trên là tương đương nên BĐT ban đầu luôn đúng

Dấu "=" \(\Leftrightarrow a=b=c\)

c) \(a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow\left(a-\sqrt{a}+\frac{1}{4}\right)+\left(b-\sqrt{b}+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\frac{1}{2}\right)^2+\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các phép biến đôi trên là tương đương nên bđt ban đầu luôn đúng

Dấu "=" \(\Leftrightarrow a=b=\frac{1}{4}\)


Các câu hỏi tương tự
Ari Amy
Xem chi tiết
Quốc Sơn
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Tam Nguyen
Xem chi tiết
Hải Dương
Xem chi tiết
Nguyễn Minh Phong
Xem chi tiết
Thanh
Xem chi tiết
Trang
Xem chi tiết
Trần Trung Kiên
Xem chi tiết