Bài 1:
\(A=\sqrt{x}^2-2\sqrt{3}.\sqrt{x}+\sqrt{3}^2=\left(\sqrt{x}-\sqrt{3}\right)^2\)
\(B=\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)\)
\(C=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
\(D=\left(\sqrt{x}+\sqrt{y}\right)\left(2\sqrt{x}-5\sqrt{y}\right)\)
Bài 2:
\(x+\sqrt{1+x^2}=\sqrt{1+y^2}-y\) (1)
\(\Leftrightarrow\left(x+\sqrt{1+x^2}\right)\left(\sqrt{1+y^2}+y\right)=1\)
\(\Leftrightarrow\sqrt{1+y^2}+y=\sqrt{1+x^2}-x\) (2)
Cộng (1) với (2):
\(x+y=-x-y\Leftrightarrow2\left(x+y\right)=0\)
Bài 4: ĐKXĐ:...
\(A\le\sqrt{2\left(x+1+5-x\right)}=2\sqrt{6}\)
\(A_{max}=2\sqrt{6}\) khi \(x+1=5-x\)