Đáp án D.
Phương pháp
Đổi biến, đặt t = s i n 2 x .
Cách giải
t = sin 2 x ⇒ d t = 2 cos 2 x d x , đổi cận
x = 0 ⇒ t = 0 x = π 4 ⇒ t = 1 ⇒ ∫ 0 π 4 f s i n 2 x c o s 2 x d x = 1 2 ∫ 0 1 f x d x = 1 2 .2018 = 1009
Đáp án D.
Phương pháp
Đổi biến, đặt t = s i n 2 x .
Cách giải
t = sin 2 x ⇒ d t = 2 cos 2 x d x , đổi cận
x = 0 ⇒ t = 0 x = π 4 ⇒ t = 1 ⇒ ∫ 0 π 4 f s i n 2 x c o s 2 x d x = 1 2 ∫ 0 1 f x d x = 1 2 .2018 = 1009
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d với a , b , c , d ∈ ℝ , a > 0 và d > 2018 a + b + c + d - 2018 < 0 . Số cực trị của hàm số y = f ( x ) - 2018 bằng
A. 3
B. 2
C. 1
D. 5
Cho hàm số f ( x ) = a x 3 + b x 2 + c x + d , ( a , b , c , d ∈ ℝ ) thỏa mãn a > 0 , d > 0 > 2018 , a + b + c + d - 2018 < 0 Tìm số điểm cực trị của hàm số y = f ( x ) - 2018
A. 2
B. 1
C. 3
D. 5
Cho hàm số f(x) liên tục trên ℝ và ∀ x ∈ 0 ; 2018 , ta có f ( x ) > 0 và f ( x ) . f ( 2018 − x ) = 1 . Giá trị của tích phân I = ∫ 0 2018 1 1 + f ( x ) d x là
A. 2018
B. 0
C. 1009
D. 4016
Cho hàm số y = f(x) là hàm số chẵn và liên tục trên đoạn - π ; π thỏa mãn ∫ 0 π f x d x = 2018 . Tích phân ∫ - π π f x 2018 x + 1 d x bằng
A. 2018
B. 4036
C. 0
D. 1 2018
Cho hàm số f ( x ) = ln 2018 x x + 1 Tính tổng S = f ' ( 1 ) + f ' ( 2 ) + . . . + f ' ( 2018 )
A . S = 2018 2019
B . S = 1
C . S = ln 2018
D . S = 2018
Cho f(x)= x x 2 + 1 ( 2 x 2 + 1 + 2017 ) , biết F(x) là một nguyên hàm của f(x) thỏa mãn F(0)=2018. Tính F(2)
A. F(2) = 5+2017 5
B. F(2) = 4+2017 4
C. F(2) = 3+2017 3
D. F(2)= 2022
Cho hàm số y=f(x)=x(x+1)(x+2)(x+3)...(x+2018)(x+2019). Tínhf’(0).
A. 0.
B. 2019 1 + 2019 2
C. P 2019
D. 2019
Cho hàm số y = f (x) xác định trên R và có đạo hàm f’(x) thỏa f’(x) = (1–x)(x+2)g(x)+2018 với g(x) < 0, ∀ x ∈ R . Hàm số y = f(1 – x) + 2018x + 2019 nghịch biến trên khoảng nào?
A. 1 ; + ∞
B. 0 ; 3
C. - ∞ ; 3
D. 3 ; + ∞
Cho hàm số y=f(x) liên tục trên đoạn [0;π/3].Biết f’(x).cosx+f(x).sinx=1, x ϵ [0;π/3] và f(0)=1. Tính tích phân I = ∫ 0 π 3 f x d x
A. 1/2 + π/3
B. 3 + 1 2
C. 3 - 1 2
D. 1/2
Cho hàm số y=f(x) xác định trên R và có đạo hàm f‘(x) thỏa mãn f’(x)=(1-x)(x+2).g(x) + 2018 trong đó g(x)<0, mọi x thuộc R. Hàm số y=f(1-x)+2018x+2019 nghịch biến trên khoảng nào?