a: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
b: Xét ΔABE vuông tại A và ΔMBE vuông tại M có
BE chung
\(\widehat{ABE}=\widehat{MBE}\)
Do đó: ΔABE=ΔMBE
c: ta có: ΔABE=ΔMBE
nên BA=BM; EA=EM
=>AM là đường trung trực của BE
a: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
b: Xét ΔABE vuông tại A và ΔMBE vuông tại M có
BE chung
\(\widehat{ABE}=\widehat{MBE}\)
Do đó: ΔABE=ΔMBE
c: ta có: ΔABE=ΔMBE
nên BA=BM; EA=EM
=>AM là đường trung trực của BE
Cho tam giác ABC vuông tại A có BC=1Ocm, AB = 6cm.
a) tính AC
b) vẽ đường phân giác BE của tam giác ABC (E thuộc AC) từ E vẽ ED vuông góc BC tại D.
Chứng minh: tam giác ABE= tam giácDBE
c) BA và DE cắt nhau tại K. Chứng mình: BE+KE>BC
d) Chứng minh: BE vuông góc KC
cho tam giác ABC vuông tại A,góc ABC = 60 độ. Tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC a) Chứng minh tam giác ABE = tam giác HBE b) Qua H vẽ HK song song BE (K thuộc AC) Chứng minh tam giác EHK đều c) HE cắt BA tại M, MC cắt BE tại N. Chứng minh NM=NC.
1. Cho tam giác ABC vuông tại A có góc C=30° tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc BC ( H thuộc BC )
a. So sánh các cạnh của tam giác ABC
b. Chứng minh tam giác ABE = tam giác HBE
c. Chứng minh tam giác EAH cân
d. Từ H kẻ HK song song với BE ( K thuộc AC ). Chứng minh: AE = EK = KC
2. Cho tam giác cân ABC ( AB = AC ). Trên tia đối của các tia BA và Ca lấy hai điểm D và E sao cho BD = CE
a. Chứng minh DE // BC
b. Từ D kẻ DM vuông góc với BC, từ E kẻ EN vuông góc với BC. Chứng minh DM = EN.
c. Chứng minh tam giác AMN là tam giác cân.
d. Từ B và C kẻ các đường vuông góc với AM và AN chúng cắt nhau tại i. Chứng minh Ai là tia phân giác chung của hai góc BAC và góc MAN.
Ai giúp mình với 2 câu luôn nha. Mình ngu hình học lắm. Cho mình xin thêm hình nữa nha. Cảm ơn nhiều.
Cho tam giác ABC vuông tại A có góc ABC=60 độ. tia phân giác góc B cắt AC tại E. Từ E vẽ EH vuông góc với BC ( H thuộc BC )
a, Chứng minh tam giác ABE=tam giác HBE
b,Qua H vẽ HK//BE (K thuộc AC). Chứng minh tam giác EHK đều
c, HE cắt BA tại M, MC cắt BE tại N. Chứng minh NM = NC
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Cho tam giác ABC vuông tại A. Biết AC = 12cm, BC = 15cm
a) Tính độ dài cạnh AB
b)Tia phân giác của góc B cắt AC tại M. Vẽ MN vuông góc với BC ( N thuộc BC ). Chứng minh AM=MN
c) Một đường thẳng qua C và vuông góc với đường thẳng BM tại E, cắt đường thẳng AB tại D. Chứng minh AD = NC
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân