\(\overrightarrow{MN}=\left(2;2\right)\Rightarrow MN=\sqrt{2^2+2^2}=2\sqrt{2}\)
\(\Rightarrow R=\dfrac{MN}{2}=\sqrt{2}\)
Gọi I là tâm đường tròn đường kính MN \(\Rightarrow\) I là trung điểm MN
\(\Rightarrow I\left(0;2\right)\)
Phương trình (C): \(x^2+\left(y-2\right)^2=2\)
b.
Tiếp tuyến d' song song d nên nhận \(\left(3;-5\right)\) là 1 vtpt
Phương trình d' có dạng: \(3x-5y+c=0\)
d' là tiếp tuyến của (C) nên: \(d\left(I;d'\right)=R\)
\(\Leftrightarrow\dfrac{\left|3.0-5.2+c\right|}{\sqrt{3^2+\left(-5\right)^2}}=\sqrt{2}\Leftrightarrow\left|c-10\right|=2\sqrt{17}\)
\(\Rightarrow\left[{}\begin{matrix}c=10+2\sqrt{17}\\c=10-2\sqrt{17}\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}3x-5y+10+2\sqrt{17}=0\\3x-5y+10-2\sqrt{17}=0\end{matrix}\right.\)