cho tam giác ABC, AB=AC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=BE. Chứng minh a) tam giác ADE cân
b) tam giác ABD= tam giác ACE
cho tam giác ABC, AB=AC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=BE. Chứng minh a) tam giác ADE cân b) tam giác ABD= tam giác ACE
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DF ⊥ BC tại F. Trên tia đối của tia AB lấy điểm E sao cho AE = CF. Chứng minh:
a) Chứng minh: ∆ ABD = ∆ FBD
b) Chứng minh: BD là đường trung trực của đoạn thẳng AF
c) So sánh AD và DC
d) Góc ADE = góc FDC và E, D, F thẳng hàng
Cho tam giác ABC vuông tại A có AB < AC. Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên AC lấy điểm E sao cho AE = AB
a, Chứng minh rằng : Tam giác ADB tam giác ADE rồi suy ra góc ABD = gócAED
b, Tia ED cắt AB tại F. Chứng minh rằng : AC = AF
c, Gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I. Chứng minh rằng : DI = IH
cho tam giác ABC có AB =AC. trên tia đối cuar BC lấy điểm D,trên tia đối của CB lấy điểm E sao cho BD=CE. gọi H là trung điểm của BC
a)Chứng minh Góc AHB=AHC
b)Chứng minh góc ABC= góc ACB, góc ABD=ACE
c)Chung minh AD=Ae
D)chúng minh AH là tia phân Giác của góc DAE
cho tam giac ABC có B=90 độ ,AD là tia phân giác của góc A (D thuộc BC).Trên tia AC lấy điểm E sao cho AB=AE,kẻ BH vuông góc với AC (H thuộc AC).CMR:
a)tam giác ABD=tam giác AED,DA vuông góc với AE.
b)AD là đg trung trực của BE
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
1) Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC ở D. Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ABD = tam giác AED
b) C/m AD vuông góc với BE
c) Chứng minh góc ADB < góc ADC
2) Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC ( D thuộc BC ). Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ADB = tam giác ADE
b) Gọi F là giao điểm của tia AB và tia ED. Chứng minh tam giác BFD = tam giác ECD
c) So sánh DB và DC