a: góc CME=1/2*180=90 độ
=>EM vuông góc AC
góc EBA+góc EMA=180 độ
=>EBAM nội tiếp
góc ANC=1/2*180=90 độ
góc ANC=góc ABC=90 độ
=>ABNC nội tiếp
b; góc BME=góc EAB
góc NME=góc NCE
mà góc NCE=góc EAB
nên góc BME=góc NME
=>ME là phân giác của góc BMN
a: góc CME=1/2*180=90 độ
=>EM vuông góc AC
góc EBA+góc EMA=180 độ
=>EBAM nội tiếp
góc ANC=1/2*180=90 độ
góc ANC=góc ABC=90 độ
=>ABNC nội tiếp
b; góc BME=góc EAB
góc NME=góc NCE
mà góc NCE=góc EAB
nên góc BME=góc NME
=>ME là phân giác của góc BMN
cho tam giác ABC vuông tại B. Trên cạnh BC lấy điiểm E ( E khác B và C). Đường tròn đường kính EC cắt AC tại M.
a) chứng minh tứ giác ABEM, ABNC là các tứ giác nội tiếp
b) chứng minh AE.AN+CE.C=AC\(^2\)
Tam giác ABC vuông tại A. Trên cạnh AC lấy điểm M, vẽ đường tròn đường kính MC cắt BC tại (D khác C) và cắt đường thẳng BM tại E ( E khác M). Đường thẳng AE cắt đường tròn tại S (S khác E). Chứng minh:
a) AM.MC=BM.ME
b) CA là tia phân giác góc SCB
c) Tam giác MDS cân
Cho tam giác ABC vuông tại A (AB lớn hơn AC) trên cạnh AC lấy M (khác A và C). Đường tròn đường kính MC cắt BC tại E và cắt đường thẳng BM tại D (E khác C, D khác M)
a) Chứng minh tứ giác ABCD nội tiếp
b) Chứng minh góc ABD bằng góc MED
c) Đường thẳng AD cắt đường tròn đường kính MC tại N (N khác D). Chứng minh CA là phân giác của góc NCE
d) Đường thẳng MD cắt CN tại K, MN cắt CD tại H. Chứng minh KH song song NE
Giải giúp em câu c, d nha
Cho nửa đường tròn (O), đường kính BC. Gọi D là điểm cố định thuộc đoạn thẳng OC (D khác O và C). Dựng đường thẳng d vuông góc với BC tại điểm D, cắt nửa đường tròn (O) tại điểm A. Trên cung AC lấy điểm M bất kỳ (M khác A và C), tia BM cắt đường thẳng d tại điểm K, tia CM cắt đường thẳng d tại điểm E. Đường thẳng BE cắt nửa đường tròn (O) tại điểm N (N khác B).
1. CM: Tứ giác CDNE nội tiếp
2. CM: 3 điểm C, K và N thẳng hàng
3. Tiếp tuyến tại N của nửa đường tròn (O) cắt đường thẳng d tại F. CM: F là trung điểm của KE và OF vuông góc MN
giúp em câu 3 thôi ạ em cảm ơn
cho tam giác ABC vuông tại A (AB>AC). Trên cạnh AC lấy điểm M khác A và C. Vẽ đường tròn đường kính MC cắt BC tại E và cắt đường thẳng MB tại D (E khác C và D khác M)
a. C/m ABCD nội tiếp
b. C/m góc ABD = góc MED
c. Đường thẳng AD cắt đường tròn đường kính MC tại N. Đường thẳng MD cắt Cn tại K. MN cắt CD tại H. C/m KH//NE
cho tam giác ABC vuông tại A (AB>AC). Trên cạnh AC lấy điểm M khác A và C. Vẽ đường tròn đường kính MC cắt BC tại E và cắt đường thẳng MB tại D (E khác C và D khác M)
a. C/m ABCD nội tiếp
b. C/m góc ABD = góc MED
c. Đường thẳng AD cắt đường tròn đường kính MC tại N. Đường thẳng MD cắt Cn tại K. MN cắt CD tại H. C/m KH//NE
Cho nửa đường tròn (O), đường kính BC. Gọi D là điểm cố định thuộc đoạn thẳng OC (D khác O và C). Dựng đường thẳng d vuông góc với BC tại điểm D, cắt nửa đường tròn (O) tại điểm A. Trên cung AC lấy điểm M bất kỳ (M khác A và C), tia BM cắt đường thẳng d tại điểm K, tia CM cắt đường thẳng d tại điểm E. Đường thẳng BE cắt nửa đường tròn (O) tại điểm N (N khác B).
1. CM: Tứ giác CDNE nội tiếp
2. CM: 3 điểm C, K và N thẳng hàng
3. Gọi I là tâm đường tròn ngoại tiếp tam giác BKE. Chứng minh rằng điểm I luôn nằm trên 1 đường thằng cố định khi điểm M thay đổi
Cho tam giác nhọn ABC ( AB<AC) nội tiếp đường tròn (O). Gọi E là điểm chính giữa của cung nhỏ BC. Trên cạnh AC lấy điểm M sao cho EM=EC, đường thẳng BM cắt đường tròn (O) tại N ( N khác B). Các đường thẳng EA và EN cắt cạnh BC lần lượt tại D và F.
a) Chứng minh tam giác AEN đồng dạng với tam giác FED
b) Chứng minh M là trực tâm của tam giác AEN
c) Gọi I là trung điểm của AN, tia IM cắt đường tròn (O) tại K. Chứng minh đường thẳng CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
Cho tam giác ABC nội tiếp đường tròn (O). Tia phân giác trong của góc A cắt đường tròn (O) tại điểm M.
a) Đường phân giác ngoài của góc A cắt lại đường tròn (O) tại N. CM M, O, N thẳng hàng.
b) Giả sử đường phân giác góc ngoài cắt đường thẳng BC tại E . CM góc AMO = góc CEA
c) Trên cạnh AC lấy điểm D tùy ý ( khác A và C). Đường thẳng BD cắt đường tròn (O) tại điểm thứ hai F. Đường thẳng qua A vuông góc với AB và đường thẳng qua F vuông góc với FC cắt nhau tại P. Chứng tỏ rằng P, D, O thẳng hàng.