Câu 1:Rút gọn các biểu thức:
A=\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}-\frac{5}{4}.\frac{13}{99}+\frac{5}{99}.\frac{1}{4}\)
Câu 2: So sánh:
A=\(\frac{2013}{2014}+\frac{2016}{2015}\)và \(\frac{2014}{2015}+\frac{2017}{2016}\)
Câu 3: Cho f(x)=ax2+bx+c. Biết 7a+b=0. Chứng minh rằng: f(10).f(-3)\(\ge\)0
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)
\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)
\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)
3/\(7a+b=0\Rightarrow b=-7a\)
\(f\left(x\right)=ax^2-7ax+c\).Ta có: \(f\left(10\right)=100a-70a+c=30a+c\)
\(f\left(-3\right)=30a+c\).Nhân theo vế ta có đpcm:
\(f\left(10\right).f\left(-3\right)=\left(30a+c\right)^2\ge0\) (đúng)