Câu 1:
Vì $G$ là trọng tâm $ABC$ và $AM$ là trung tuyến nên $AG=\frac{2}{3}AM$
$\Rightarrow AG=\frac{2}{3}.6=4$ (cm)
$AM=6$ (cm) - theo giả thiết
Câu 2:
$f(0)=a.0^2+b.0+c=2019$
$\Rightarrow c=2019$
$f(1)=a.1^2+b.1+c=a+b+c=2020$
$\Rightarrow a+b=2020-c=2010-2019=1(1)$
$f(-1)=a(-1)^2+b(-1)+c=a-b+c=2020$
$\Rightarrow a-b=2020-c=2020-2019=1(2)$
Lấy $(1)+(2)\Rightarrow 2a=2\Rightarrow a=1$
$b=a-1=1-1=0$
Vậy đa thức $f(x)=x^2+2019$
$f(2)=2^2+2019=2023$