a)
Do ABCD là hình thoi :
=> AB // CD=) AM // CN
Do AM // CN
=> \(\widehat{MAO}=\widehat{NCO}\) ( 2 góc so le trong )
Do ABCD là hình thoi:
Mà O là giao điểm của 2 đường chéo
=> AO = CO ( vì hình thoi có tất cả các tính chất hình bình hành ) => O là trung điểm của AC
Xét tam giác AOM và tam giác CON có :
\(\widehat{AOM}=\widehat{CON}\)( đối đỉnh )
AO = CO
\(\widehat{MAO}=\widehat{NCO}\)(chứng minh trên)
=> Δ AOM = Δ CON ( g-c-g )
b) Do Δ AOM = Δ CON ( chứng minh phần a)
=) OM = ON (2 cạch tương ứng)
=> O là trung điểm của MN
Xét tứ giác AMCN có :
2 đường chéo AC và MN cắt nhau tại trung điểm O
=> AMCN là hình bình hành