a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Câu 13: (2 điểm) Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. a) Chứng minh: ABM = ACM. b) Gọi Ay là tia đối của tia AB và Ax là tia phân giác góc ngoài ở đỉnh A. Chứng minh: Ax // BC.
Cho tam giác ABC có AB = AC và AB > BC Gọi M là trung điểm của cạnh BC.
a. Chứng minh rằng tam giác ABM =tam giác ACM và AM là đường trung trực của BC.
b. Trên tia đối của tia MB, lấy điểm D sao cho MD = MA chứng minh AB//CD.
c. Trên nửa mặt phẳng có bờ chứa cạnh AC và không chứa điểm B ,kẻ tia Ax vuông góc AM. Trên tia Ax lấy điểm E sao cho AE = BC Chứng minh rằng D, C, E thẳng hàng
Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB=AC. Gọi M là trung điểm của đoạn thẳng BC và E là trung điểm của đoạn thẳng AC, trên tia đối của tia EM lấy điểm H sao cho EH=EM.
a) Chứng minh tam giác ABM = tam giác ACM.
b) Chứng minh tam giác AEH = tam giác CEM.
c) Gọi D là trung điểm của đoạn thẳng AB. Từ B vẽ đường thẳng song song với đường thẳng AM, đường thẳng này cắt tia MD tại K.
Chứng minh 3 điểm H, A, K thẳng hàng.
Cho tam giác ABC có AB = AC,gọi M là trung điểm của BC. a)Chứng minh:∆ABM = ∆ACM. b)Trên tia đối của tia MA lấy điểm D sao cho MA = MD.Chứng minh:∆ABM = ∆DCM và AB//CD. c)Chứng minh tam giác ABM vuông tại M
cho tam giác ABC có AB=AC và BC<AB,gọi M là trung điểm của BC
a)c/m: tam giác ABM=tam giác ACM và AM là tia phân giác của góc BAC
b)trên cạnh AB lấy điểm D sao cho CB=CD.Kẻ tia phân giác của góc BCD,tia này cắt cạnh BD tại N . CHỨNG MINH: CN vuông góc BD
c)trên tia đối của tia CA lấy điểm E sao cho AD=CE, chứng minh: BE-CE=2BN
Bài 1:
Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM
a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM
b) CM : AM vuông góc BC
c) CM : tam giác AEH = tam giác CEM
d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng
cho tam giác ABC có AB = AC và M là trung điểm của BC. Gọi N là trung điểm của AB, trên tia đối của tia NC lấy điểm K sao cho NK = NC
a) chứng minh tam giác ABM = ACM
b) chứng minh AK = 2.MC
c) chứng minh: AM vuông góc AK
Cho tam giác ABC có cạnh AB=AC, M là trung điểm của BC
a. Chứng minh tam giác ABM = tam giác ACM
b. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh AB // CD
C. Trên nửa mặt phẳng bờ là AC không chứa điểm B, vẽ tia Ax // BC cắt Dc tại E
Tính số đo góc CEx biết góc ABC = 30 độ
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng: a) tam giác AMB= tam giác AMC b) AM là tia phân giác của BAC c) AM vuông góc với BC d) Vẽ At là tia phân giác của góc ngoài ở đỉnh A của tam giác ABC . Chứng minh : At // BC