Câu 50**: Cho góc nhọn α tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\)bằng
A. \(tan^2\alpha\) ; B . \(cot^2\) α ; C . 0 ; D. 1 .
giải hộ mik vs
Câu 50**: Cho góc nhọn tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\) bằng
A. \(tan^2\alpha\) ; B . \(cot^2\alpha\) ; C . 0 ; D. 1 .
Cho góc nhọn \(\alpha\). Tính giá trị biểu thức:
a) \(A=\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
b) \(B=\sin^4\alpha\left(1+2\cos^2\alpha\right)+\cos^4\alpha\left(1+2\sin^2\alpha\right)\)
c) \(C=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
d)\( D=\left(3\sin\alpha+4\cos\alpha\right)^2+\left(4\sin\alpha-3\cos\alpha\right)^2\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha\)
a) A = \(\frac{\cot^2\alpha-\cos^2\alpha}{\cot^2\alpha}-\frac{\sin\alpha.\cos\alpha}{\cot\alpha}\)
b) B = \(\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2+\cos^4\alpha-\sin^4\alpha-2\cos^2\alpha\)
c) C = \(\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
2)đơn giản biểu thức
a) 1-sin2 alpha
b) sin4 alpha + cos4 alpha +2 sin2 alpha.cos2 alpha
c) (1-cos alpha).(1+cos alpha)
d) 1+ sin2 alpha +cos2 alpha
e) tg2 alpha -sin2 alpha.tg2 alpha
g) cos2 alpha+cos2 alpha.tg2 alpha
Chứng minh:
a)\(\cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
b)\(\frac{cos\alpha}{1-sin\alpha}=\frac{1+sin\alpha}{cos\alpha}\)
c)\(\frac{\left(sin\alpha+cos\alpha\right)^2-\left(sin\alpha-cos\alpha\right)^2}{sin\alpha.cos\alpha}=4\)
Mình cần gấp!!!
Chứng minh giá trị các biểu thức sau luôn là hằng số với mọi góc nhọn \(\alpha\)
\(a.\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha\cdot\cos^2\alpha\)
\(b.\cos^2\alpha+\sin^2\alpha+\tan^2\alpha\cdot\cos^2\alpha+\cot^2\alpha\cdot\sin^2\alpha\)
Cho \(\sin\alpha+\cos\alpha=\frac{\sqrt{6}}{2},a\in\left(0;\frac{\pi}{4}\right)\)
Tính giá trị biểu thức: \(P=\cos\left(\alpha+\frac{\pi}{4}\right)+\sqrt{2\left(1-\sin\alpha\cos\alpha+\sin\alpha-\cos\alpha\right)}\)
Hãy đơn giản các biểu thức:
a) \(1-sin^2\alpha\)
b) \(\left(1-cos\alpha\right)\left(1+cos\alpha\right)\)
c) \(1+sin^2\alpha+cos^2\alpha\)
d) \(sin\alpha-sin\alpha cos^2\alpha\)
e) \(sin^4\alpha+cos^4\alpha+2sin^2\alpha cos^2\alpha\)
g) \(tan^2\alpha-sin^2\alpha.tan^2\alpha\)
h)\(cos^2\alpha+tan^2\alpha.cos^2\alpha\)
i) \(tan^2\alpha\left(2cos^2\alpha+sin^2\alpha-1\right)\)