a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
b: BC=10cm
AH=4,8cm
BH=3,6cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
b: BC=10cm
AH=4,8cm
BH=3,6cm
Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 6 cm, AC = 8cm
a/ Chứng minh ∆HBA đồng dạng ∆ABC. b/ Tính BC, AH, BH
Cho tam giác ABC vuông tại A vẽ đường cao AH,AB= 6cm,AC= 8cm
A,Chứng minh tam giác HBA đồng dạng tam giác ABC
B, tính BC,AH,BH
cho tam giác ABC vuông tại A vẽ đường cao AH,AB=6cm,AC=8cm
a) chứng minh tam giác HBA đồng dạng với tam giác ABC
b)Tính BC,AH,BH
Câu 22. Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 6 cm, AC = 8cm
1. Chứng minh ∆HBA đồng dạng ∆ABC.
2. Tính BC. AH, BH
Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 6 cm, AC = 8cm
a/ Chứng minh ∆HBA đồng dạng ∆ABC.
b/ Tính BC, AH, BH
c/ E và F là hình chiếu của H trên cạnh AB và AC chứng minh AE . EB + AF .FC = EF2
Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 3cm, AC = 4cm.
a) Chứng minh tam giác HBA đồng dạng tam giác ABC.
b) Tính BC
ABC vuông tại A Vẽ đường cao AH AB = (6 cm )AC = (8 cm) a) cho tam giác HBA đồng dạng tam giác ABC B) tính bc, ah, bh
Bài 17: Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 6 cm,
AC = 8cm
a/ Chứng minh ∆HBA đồng dạng ∆ABC
b/ Tính BC , AH , BH
c/ Gọi I và K lần lượt hình chiếu của điểm H lên cạnh AB, AC.
Chứng minh AI.AB =AK.AC
d/ Tính diện tích hình chữ nhật IHKA
Cho tam giác ABC vuông tại A, vẽ đường cao AH, AB =8cm, AC=10cm.
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Tính BC,AH,BH