Giả sử \(\sqrt{7}\)là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\)(tối giản)
Suy ra \(7=\frac{m^2}{n^2}\)hay 7n2=m2 (1)
Đẳng thức này chứng tỏ m2 chia hết 7.Mà 7 là số nguyên tố nên m chia hết 7.
Đặt m=7k (k thuộc Z),ta có m2=49k2 (2)
Từ (1) và (2) =>7n2=49k2 nên n2=7k2 (3)
Từ (3) ta lại có n2 chia hết 7 và vì 7 là số nguyên tố nên n chia hết 7
m và n cùng chia hết 7 \(\Rightarrow\frac{m}{n}\)ko tối giản,trái giả thiết.
Vậy \(\sqrt{7}\)là số vô tỉ